
Scaling Up Data-Centric Middleware on a Cluster Computer

David T. Liu, Michael J. Franklin
UC Berkeley, CS Division

Berkeley, CA 94708

{dtliu,franklin}@cs.berkeley.edu

Jim Garlick, Ghaleb M. Abdulla
Lawrence Livermore National Laboratories

Livermore, CA 94551

{garlick1,abdulla1}@llnl.gov

ABSTRACT
Data-centric workflow middleware systems are workflow sys-
tems that treat data as first class objects alongside pro-
grams. These systems improve the usability, responsive-
ness and efficiency of workflow execution over cluster (and
grid) computers. In this work, we explore the scalability
of one such system, GridDB, on cluster computers. We
measure the performance and scalability of GridDB in ex-
ecuting data-intensive image processing workflows from the
SuperMACHO astrophysics survey on a large cluster com-
puter. Our first experimental study concerns the scale-up
of GridDB. We make a rather surprising finding, that while
the middleware system issues many queries and transactions
to a DBMS, file system operations present the first-tier bot-
tleneck. We circumvent this bottleneck and increase the
scalability of GridDB by more than 2-fold on our image
processing application (up to 128 nodes). In a second study,
we demonstrate the sensitivity of GridDB performance (and
therefore application performance) to characteristics of the
workflows being executed. To manage these sensitivities, we
provide guidelines for trading off the costs and benefits of
GridDB at a fine-grain.

1. INTRODUCTION
In recent years, scientists in many disciplines, including

physics, astronomy, and biology, have looked to grid com-
puting to accommodate their ever-increasing appetite for
digital data generation, transformation and analysis [12, 16].

In response to the demand for better grid computing tools,
computer scientists have proposed a number of “data cen-
tric” workflow middleware systems [15, 20, 21, 9, 7]. These
systems treat data as first class objects alongside workflow
programs and exploit their understanding of data to im-
prove improve user-productivity. Often, these systems are
equipped with simple interfaces or languages that improve
the usability, programmability, and responsiveness of grid
resources. Some also seek to automate otherwise tedious,
but essential, tasks, such as data provenance. In this pa-
per, we study the performance and scalability of our system,
GridDB, from UC Berkeley [15].

Figure 1 depicts the role of GridDB. A scientist interacts
with grid infrastructure (in this case, a cluster computer)
through GridDB, rather than directly, to secure higher-level
interfaces and benefits. These benefits include:

• Simple interfaces for defining and executing computa-
tions.

Scientist

GridDB Data-Centric Workflow Middleware
Provides:
 plug-n-play interfaces (usability/programmability)
 monitoring and steering (responsiveness)
 smart scheduling (efficiency)
 data-provenance (new features)

·

Cluster
Computer

Figure 1: This paper focuses on the performance
and scalability of GridDB on a cluster computer.

• Monitoring and steering of long-running computations.

• ”Smart” scheduling to automatically maximize the util-
ity of available resources.

• Data provenance tracking and querying, allowing users
to determine the origins of a computation.

While there has been workflow middleware research fo-
cused on distributed computation, where data placement
and fast file transfer is of paramount importance [13, 19],
our focus in this paper is on how GridDB may be scalably
implemented on the cluster platform.

An important difference between cluster computers and
“grid computers” is that data from one computation node
can be accessed by other computation nodes through a net-
work file system, obviating the need for file transfers. As a
result, clusters can support data-intensive (read and write
many bytes), as well as purely compute-intensive (consume
many compute cycles) workflows [14]. Additionally, users no
longer have the incentive to optimize file-transfer precisely,
its human cost may not justify its performance benefit. Fi-
nally, with the file transfer bottleneck removed, workflow
middleware may emerge as the next bottleneck.

In this work, we retrofit our previous implementation of
GridDB [15], specializing it towards the cluster environment.

1

Using our new implementation, we perform experimental
studies with data-intensive astrophysics image processing
pipelines from the SuperMACHO Project [6]. Using MCR,
a large cluster computer at LLNL, we make the following
contributions:

• We show that, even in the absence of file copies, and
in the presence of a transaction-processing database
system, file system operations represent the first tier
bottleneck in GridDB. We circumvent this bottleneck
with a pair of optimizations, more-than-doubling the
scalability of our system. The optimized implementa-
tion easily handles a 128-node cluster.

• We show that the scalability of a system such as GridDB
will be highly sensitive to the characteristics of the
workflows it is executing. We define a property of
workflow programs, the middleware-load, to capture
the amount of strain a workflow program places on
middleware. We provide guidelines for minimizing
middleware-load, while maximizing the benefits gained
from middleware.

• Finally, we demonstrate that programs can exhibit
different middleware-load on two popular global file-
systems, NFS and Lustre. We characterize GridDB’s
performance and scalability in both cases.

2. BACKGROUND
We start our discussion by providing background informa-

tion. This section summarizes information from a previous
work [15] that is relevant to our performance study. This
section describes the workflows that GridDB supports, the
benefits it provides, and how information about a workflow
is conveyed from a user to GridDB (modeling).

2.1 Workflows
In this section, we describe GridDB’s workflow model.

Workflows are sets of modular programs, interacting to trans-
form an available input into a desired output. Each program
converts input data to output data. Input data comes from
one or more1 filesets, or sets of files, and a set of command-
line parameters. Output consists of one or more filesets. A
program G depends on another program F if F creates a
fileset used by G. Within such a relationship, we refer to F
as the parent and G as the child. A process is an instanti-
ation of a program, or a combination of a program and an
instance of its inputs.

Figure 2 shows an example workflow from the SuperMA-
CHO image processing pipeline. We use this pipeline in the
majority of our experimental studies. The overall goal of the
pipeline is to extract a set of sky objects from a telescope im-
age. The pipeline proceeds as a two-step process. First, the
mscpipe program transforms and splits a Telescope Image
fileset into 16 reduced image filesets ({RedImg1, . . . , RedImg16}.
Each of these reduced images can be processed in parallel
by the photpipe program to extract sky objects. Both pro-
grams, mscpipe and photpipe, use auxiliary fileset inputs
(Reference Images and Calibration Images, respectively).
These image processing programs are written in a combi-
nation of C and perl. In our test environment (described in
Section 4), the average execution times of the two programs
mscpipe and photpipe are 273 and 342 seconds, respec-
tively.

1filesets may come from more than one source

mscpipe

Telescope
Image

RedImg
1

photpipe

SkyObjects
1

Reference
Images

Calibration
Images RedImg

16

photpipe

SkyObjects
16

Calibration
Images

...

a fileset

Figure 2: FullPipe: The SuperMacho image process-
ing workflow

2.2 Benefits of GridDB
By executing workflows through GridDB, a scientist gains

a host of benefits that improve his productivity:

• Automatic Execution: Processes are automatically
prepared and launched. Dependencies between pro-
cesses are automatically enforced.

• Data Provenance: Given a selected data product,
a user should be able to examine the programs and
data that led to its existence. For example, the prove-
nance of SkyObjects16 in Figure 2 includes the filesets
RedImg16, Calibration Images, Reference Images, and
Telescope Image and the programs mscpipe and phot-
pipe. o

• Efficient Recomputation (or Computation
Caching): Commonly, scientist needs to rerun a com-
putation with a parameter change. In many circum-
stances, re-generation of data products can be achieved
without complete workflow re-execution. Armed with
workflow information, GridDB can identify these op-
portunities. For example, suppose that a user would
like to rerun the computation of Figure 2 with a dif-
ferent set of Calibration Images. In this circumstance,
the process mscpipe may avert re-execution, as its re-
sults would be unaffected by a change in Calibration
Images. Generally speaking, this is particular advan-
tageous when the process whose execution was elimi-
nated is resource-intensive.

• Scheduling: Studies have shown that intelligent re-
source allocation can make significant differences in
execution efficiency. GridDB, being aware of resource
availability, workflow execution requirements, and data
product desirability, can make intelligent scheduling
decisions.

• Computational Monitoring and Steering: work-
flow processes submitted for cluster execution are often
long-running. Often, it is useful to monitor workflow
execution and steer it by prioritizing sub-workflows
that produce the most interesting results. For exam-
ple, LSST, an astronomy project that we collaborate
with (the LSST [5]) needs to execute a set of verifi-
cation processes upon spotting a suspected supernova.
In such cases, GridDB can automatically divert cluster
resources towards these verification processes

2

F

G

FoldF

Unfold
G

Fold
G

UnfoldF

F

G

Basic 2-node workflow

2-node workflow
augmented with GridDB
overhead stages

Figure 3: A basic 2-node workflow and an aug-
mented workflow with the unfold and fold overhead
stages.

2.3 GridDB Modeling
To obtain the benefits mentioned in the previous section,

GridDB must be given information about the workflows it
is to execute. In GridDB, the description of workflows is
decoupled from their execution. The first is performed by
the modeler role and the second by the analyst. The modeler
performs setup by defining workflows and their interfaces,
include the names that types of filesets that are produced
and consumed by each program. After definition of these
workflows, the analyst may pull these workflows “off-the-
shelf,” applying them to collections of inputs. Workflow
evaluation automatically proceeds by dispatching processes
to cluster (or grid) computing nodes. Through the modeler’s
efforts, the analyst reaps the benefits mentioned above.

3. GRIDDB SYSTEM OVERVIEW
In Section 2.2, we described a suite of benefits to in-

crease a scientist’s productivity when executing workflows
over a cluster. In this section, we describe, at a concep-
tual level, how these features are provided by GridDB. Ul-
timately, GridDB carries out a set of tasks, which occur
in stages before and after the execution of each processes.
These “overhead” stages, which we call unfold (before ex-
ecution) and fold (after execution) involve middleware ex-
ecution, interleaved with database queries and transactions
and file system linking operations, as depicted in Figure 3.

The relationships between GridDB, database, file system
and science codes is shown in the component ecosystem of
Figure 4, which we proceed to described. The science code,
reads and writes persistent data from and to the file system
(arc A). GridDB prestages data into a science code process’
working directory (arc C) and dispatches it for execution
onto a cluster node (arc B). Tables that catalog monitoring
information, provenance information, and tuple data are in-
serted and retrieved by GridDB (arc D), and stored in the
database.

In the next part of this section, we describe how this
scheme emerges. Provisioning of the target features can be
factored into a set of responsibilities. These responsibili-
ties can be implemented as file system calls and database
queries/transactions that are carried out either before (in
the unfold stage) or after (in the fold stage) process execu-
tion.

We trace the cause-effect relationships that lead from high-

Workflow Middleware

Database
File

System

Science
Code

(D) (C)

(A)

(B)

Figure 4: The Software Component Ecosystem

..

Workflow
Execution

Data Provenance

Computation
Caching

Cost Estimation
(and Scheduling)

Transmission

Preservation

Tracking

File Copies or Links
(File System)

Catalogs in Tables
(DB Transactions)

Data-Centric
Features

GridDB
Tasks

File System, Database
Operations

Monitoring
and Steering

Figure 5: The mapping from responsibilities to
tasks, to operations. Operations are carried out in
GridDB overhead stages.

level, user-centric features down to low-level software oper-
ations. Ultimately, the features we would like to provide
result in file system operations and database transactions
that occur before and after each program execution.

3.1 Features, Task and Operations
Figure 5 summarizes the relationships between features,

tasks and operations. We describe each of the three tasks,
transmission, preservation and tracking, below. In each
case, we explain the tasks, the features they support, and
the file system or database operations used to implement
them.

To provide workflow execution capabilities, the middle-
ware must perform data transmission, or the transfer of file-
sets from one process’ working space to another process’
working space. These can either be carried out as copies or
links from one process’ working directory to the next.

Two other tasks, preservation and tracking, jointly pro-
vide the other services, data provenance, computation caching,
cost estimation (which is needed for intelligent scheduling),
monitoring and steering.

Preservation is an enforcement function — when a pro-
cess, P , uses a fileset, it must not modify the fileset. Other-

3

wise, the data provenance of P is lost, and the consumed
(and modified) data product cannot be deterministically
reused (i.e., computation caching) by other processes that
require the same fileset. Preservation can be provided in one
of two ways, depending on how transmission is carried out.
If transmission is carried out with file copies, preservation
is automatically provided, even if the copy is modified, the
original is preserved. If transmission is provided through file
linking, GridDB must also set the files in the fileset to be
read-only as modifications through a link will taint the orig-
inal fileset. In Section 4.1, we discuss the advantages and
disadvantages of alternative methods for file transmission.

Tracking is implemented through a collection of map-
pings: from filesets to their parent processes, from processes
to the inputs used to create them, and from processes to
resources expended in executing the processes. These map-
pings are best stored and queried in table structures. We
implemented this functionality using a relational database
for two reasons: first, it helped us prototype quickly and
second, these catalogs may become large, and must remain
persistent. Both requirements are aptly handled by off-the-
shelf databases.

Because of these these interactions between middleware,
file system, and database, the time in an overhead stage can
be partitioned between GridDB execution, and calls to the
file system and database.

3.2 Programs and Middleware-Load
As we demonstrate experimentally in Section 6.4, GridDB’s

performance and scalability is sensitive to the load placed
upon it by the programs it is running. Therefore, we char-
acterize each program with a middleware-load, or amount of
strain that the program places upon GridDB.

As described in Section 2.3, a modeler includes with each
program specification a list of data tuples and filesets that
belong to the input of each program. These specifications
are used to stage inputs for processes using the program,
as well as collect and catalog the process’ outputs. Since
the inputs of programs need to be retrieved and staged by
GridDB, and the outputs need to be cataloged and stored,
the programs middleware-load is directly proportional to
both. An additional factor to middleware-load is the run-
time of the program. Short-running programs require mid-
dleware action more frequently than long-running programs,
and therefore present a higher load to the middleware. Pulling
these factors together, we can describe a program P ’s middleware-
load(ML) on a system as:

MLP =
cost(numQueriesP) + cost(numLinksP)

runtimeP

A program with a higher MLP will more difficult to han-
dle, and consequently, GridDB’s performance and scalability
will be inversely proportion to the MLP of the workflows it
shepherds. In Section 6.4, we show several examples of pro-
grams and their middleware-loads.

4. THE CLUSTER ENVIRONMENT
In this paper, we focus our efforts on cluster comput-

ers. A cluster computer is a large computer created from a
collection of small, often commoditized, components (cpus,
disks, memory, network interconnects). Commoditization
has made cluster computers the platform of choice for cost-
effective scientific computing [18].

An important characteristic of cluster computing that we
exploit is that file transmission can be achieved with a link,

rather than a copy, as is required in distributed grid comput-
ing. There are two key implications to this: first, it enables
a broad class of applications, which are not only compute-
intensive, but also data-intensive (such as the SuperMA-
CHO image processing application that we work with) [14].
Second, it qualitatively enables “lightweight modeling” in
GridDB, easing the burden on the modeler.

4.1 Links Instead of Copies
In section 3.1, we described file transmission as one of

the responsibilities that GridDB was responsible for. As
previously mentioned, file transmission on a cluster can oc-
cur through file-linking, rather than file copying. With the
added caveat that the linked-to file must be made read-only.
This optimization has a tremendous benefit — the perfor-
mance of file transmission is no longer dependent on the size
of the file.

The naive instantiation of transmission through linking is
the ”leaf-linking” transmission method of Figure 6. Leaf-
linking replicates the directory structure of filesets trans-
ferred from parent to child, but links files instead of copying
them. We initially tried the ’root-linking’ method to opti-
mize further, but ran into a problem: the receiving program
was not allowed to add files to any directories used by the
input filesets. Adding files would violate the preservation
of the input filesets, as illustrated by the addition of file 4
to directory B in Figure 6. Therefore, we had to resort to
leaf-linking, which performs worse than root-linking, as we
demonstrate in Section 6.2.3.

4.2 Lightweight Modeling
The cluster environment also provides users with the op-

tion of reducing their modeling effort by specifying filesets
at a coarse-grain. Modelers, in specifying which files are
created, may specify them at a coarse grain. For example,
suppose that a parent program, F , creates two files with
paths out/1 and out/2, only one of which is used by a child
program G. The modeler can simply specify that out is ex-
ported from F to G, without understanding exactly which
files are being used. Such a coarse specification of program
interfaces requires less understanding of programs, which is
potentially expensive, and is easier to maintain. As an ex-
ample of ease-of-maintenance, suppose F later creates a new
file out/3 that is needed by G; the modeler’s prior specifi-
cation remains unchanged.

In a distributed scenario, such “sloppy” modeling may be
ill-advised. File-transfer is the bottleneck, so transporting
files gratuitously may severely impact application perfor-
mance. On a cluster, file transfers are obviated, so we can
refocus our efforts on the human bottleneck.

5. A BASELINE IMPLEMENTATION
GridDB’s programming logic is decomposed into a set of

stages connected by queues (similar in spirit to an event-
driven programming model). Stages receive requests, per-
form some operations, and possibly enqueue requests in into
output queues. Each stage can be served by multiple threads.
This is used to take advantage of concurrency when a stage
is long-running.

An architectural diagram of the stages of GridDB is shown
in Figure 7. There are four stages, each connected by queues.
We describe the stages by walking through the life of a re-
quest. A client submits a request for a set of computations
to the Req stage. The request consists of a workflow, and a
set of inputs to the workflow. It is decomposed into a set of
processes. Processes are sent to the Unfold stage, wherein

4

F workdir

A

B

1

2

3

G workdir

A

B

1

2

3

F workdir

A

B

1

2

3

G workdir

A

B

1

2

3

F workdir

A

B

1

2

3

G workdir

A

B

44

BA B is a link to directory A

X Y Y is a link to file X

X Directory X

Y File Y

Legend

File Copying:
very slow and always correct

(2 mkdirs and 3 copies)

Root-Linking:
very fast, but not always correct

(2 links)

Leaf-Linking:
slow and always correct

(2 mkdirs and 3 links)

4

Creation of file 4 NOT
ALLOWED

Creation of file 4
ALLOWED

Creation of file 4
ALLOWED

Figure 6: File Transmission Methods between parent process F and child process G. Copying provides
transmission and preservation, but is unnecessarily expensively on a cluster. Leaf-linking replicates the
directories of filesets, but links files. Root-linking automatically links to target directories but does not allow
creation of files in the directories, as may be required by child process G (file 4 cannot be created using
root-linking).

GridDB

Req

Unfold

Fold

Exec

Scientist:
Requests

Computations

Cluster
ComputerQ

QQ

Q

GridDB runs on 1 node
along with PostgreSQL

GridDB manages an n-
node cluster

Figure 7: Stages in GridDB Processing.

a working directory for the process is created on the file sys-
tem. When unfolding is completed, the process is sent to the
Exec stage, where the process is assigned to a node. The
node executes a computation over the process’ working di-
rectory, modifying it and creating output filesets. When the
process completes, the Exec stage enqueues a request for
the Fold stage to post-process the request. This includes all
of the following activities: collecting output FileSets, extri-
cating children processes that require the current process’
output, logging information tracking information into the
database.

Each process goes through its three phases, unfold, exec
and post. The exec stage is spent on a cluster node, while
the unfold and post stages are spent in GridDB. Bottlenecks
may occur in a couple of ways. If a job spends too much
in its unfold phase, it is not allowed to proceed to its exec
stage, where it occupies a cluster node. Alternately, if the
unfold stage of a parent process requires too much time,

a child process may be prevented from executing, as the
child blocks on the parent’s input. This is how GridDB
scalability may be an issue: GridDB must work fast enough
to keep processes moving through the unfold and fold stages,
in order to keep the n-node cluster utilized. If the unfold
and fold stages require too much time, the middleware will
fail to occupy the cluster fully.

Our implementation was written in java, consisting of
5059 non-commented source statements. Our database of
choice was PostgreSQL. We benchmarked four open-source
databases, PostgreSQL [4], MySQL [3], hsqldb [2] and Apache
Derby [1]. MySQL was actually the fastest with postgresql
in a close second. We chose PostgreSQL, however, for its
more complete implementation of SQL (most notably, it in-
cluded views and subqueries). In the end, the small per-
formance penalty did not matter. The latter two DBMS’s
offered an opportunity for tight coupling with the GridDB
source, as they are written in java. However, their perfor-
mance was considerably slower than the that of the first
two.

One problem that we encountered in using java was the
lack of a file linking API call (like symlink(2)). This call
is used for our linking-based file transmission methods. Be-
cause java strives to be platform independent, and the se-
mantics of linking differs across computing platforms, link-
ing API’s are not provided. To workaround this, we had to
make calls to ln to create links. As we will show in our ex-
periments section, Section 6.2, this was a source of GridDB
overhead.

6. EXPERIMENTS AND OPTIMIZATIONS
We discuss experimental results across varying implemen-

tations, workloads and file system platforms. All experi-

5

ments were run by isolating an n-node cluster from the MCR
cluster computer at LLNL.

We ran three main sets of experiments. In our first set
of experiments we discovered that GridDB’s baseline imple-
mentation has trouble scaling up to 64 nodes. After drill-
down, we identified file system linking as GridDB’s main
bottleneck. After implementing a pair of optimizations, we
scaled easily to 128 nodes, more than doubling GridDB’s
scalability.

In our second set of experiments, we execute a highly in-
tensive workflow to demonstrate that a workflow system like
GridDB is sensitive to workflow programs’ middleware-load.
To gain control over the load imposed by workflow programs
upon GridDB, Section 7 provides guidelines for deciding
whether or not workflow programs should be decomposed
and exposed to GridDB. These decisions are based on the
costs and benefits of different modeling alternatives.

In our last set of experiments, we compare GridDB’s per-
formance on two separate network file systems, Lustre and
NFS. We show that the middleware-load of programs run
on NFS is lower than when they are run on Lustre. This is
due to two factors: (1) programs run on NFS execute slower
than on Lustre and (2) metadata (including linking) opera-
tions on Lustre are slower than on NFS. Incidentally, while
users will see better overall application performance using
Lustre, GridDB will scale better on NFS.

6.1 Experimental Setup
Our experiments were carried out on the MCR cluster

computer. MCR is an 11 TFLOPS cluster with 1152 nodes,
each with 2 Intel Xeon 2.4 GHz processors and 4 GB of
memory. In most of our experiments, we ran our science
codes over the Lustre global parallel file system [8]. In our
third set of experiments, we run some experiments on the
NFS file system.

Our experiments were carried out by allocating blocks of
nodes for 6 to 12 hours at-a-time to gain isolation from other
processes running on the cluster. To emulate computation
on an n-node cluster, we allocated a block of n + 1 nodes.
GridDB and PostgreSQL were launched on one node (as
shown in Figure 7. Afterwards, we submitted a request for
processing m images through one of two workflow, which
are described in the next section. In all our experiments,
we sent twice as many images compared to the number of
nodes in the cluster (m = 2n). Offered load is always high-
enough to keep the cluster occupied. If it is under-utilized,
it is because GridDB is becoming a bottleneck. In all of ex-
periments, scheduling was done in “batch-mode.” Programs
earlier in the pipeline were executed before programs later
in the pipeline.

On MCR, we do not have isolation of the network and
network file systems. These resources are shared by all pro-
cessors simultaneously. To minimize contention of network
and storage resources, all of our experiments were carried
out between 6pm and 6am, when these resources were the
least loaded.

6.1.1 Workflows
We used two workflows in our experiments. Our main

workflow, the SuperMACHO image processing pipeline
(FullPipe), was described in Section 2.1 and is shown in Fig-
ure 2. The parameters that affect SuperMACHO’s middleware-
load is shown in Table 1. Of the two programs in this work-
flow, mscpipe is more intense. Its unfold phase involves
788 links, a fact that we did not discover until we actu-
ally ran the workflow in leaf-linking mode. The fold phase

mscpipe1

mscpipe2

FS
0

FS1

FS
2

mscpipe3

FS
3

Reference
imgs

Reference
imgs

Reference
imgs

Figure 8: [EXP2] A workflow created from decom-
posing the mscpipe program of FullPipe into three
sub-programs.

of mscpipe involves a large number of database transac-
tions. This is due to the fact that the completion of an
mscpipe process involves data structure instantiation (in the
database) for the 16 photpipe processes that are spawned
by each mscpipe process.

We use a second workflow to demonstrate the sensitivity
of GridDB’s scalability to workload.

The second workflow, DecomposedPipe, is a workflow cre-
ated from decomposing the mscpipe program of FullPipe
into three parts(mscpipe1,mscpipe2,mscpipe3). It’s topol-
ogy is shown in Figure 8 and its middleware-load character-
istics are shown in Table 2. This pipeline, with its shorter
program execution times (the average stage length is one-
third the average stage length of FullPipe), and comparable
linking and query characteristics should be much harder for
GridDB to handle. We use it in Section 6.4 to demonstrate
that the overhead of middleware (and the performance of
applications running on the middleware) is sensitive to a
programs middleware-load.

6.2 Exp 1: Tuning GridDB
Our first set of experiments involves the profiling of our

baseline implementation. Our baseline scale-up was not
good. GridDB became the bottleneck while trying to pro-
cess 128-images through FullPipe on a 64-node cluster. Our
system profiles were surprising — file system metadata op-
erations (rather than database transactions) were responsi-
ble for GridDB’s laggard performance. We implemented a
pair of optimizations to reduce the cost of file-system meta-
data operations. With these optimizations, our scalability
increased by more than a factor of 2 as GridDB’s optimized
implementation kept a 128-node cluster near full-utilization.

6.2.1 Results: Baseline Implementation
First, we characterize the scalability of GridDB’s baseline

implementation. Figure 9 shows a node-utilization profile
(node-utilization verses time) for our 16-node, 32-image run.
The graph shows that GridDB is able to keep the cluster
fully-utilized. Tiny kinks in the top of the graph show (pre-
dominantly) sub-second intervals after a job completes on a
node, and before the next job is dispatched to it. This initial
graph can be contrasted with the node-utilization profile for
our 64-node, 128-image run, depicted in Figure 10. In this
graph, GridDB struggles to keep the cluster 50% utilized.

To understand these scalability problems, we briefly ex-

6

unfold fold
Program Queries Links (leaf-linking) Queries Links (root-linking) Average Exec Time (s)
mscpipe 13 788 297 2 273
photpipe 14 2 25 1 342

Table 1: [EXP3] Characteristics of the SuperMACHO full-image pipeline

unfold fold
Program Queries Links (leaf-linking) Links (smart-linking) Queries Links (smart-linking) Average Exec Time (s)
mscpipe1 13 788 1 45 5 75
mscpipe2 17 876 50 23 5 168
mscpipe3 17 861 70 35 5 34

Table 2: [EXP3] Characteristics of the sub-programs (per-image) of a decomposed mscpipe.

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000

N
um

be
r

of
 N

od
es

 U
til

iz
ed

time (sec)

Utilization vs. time for 16 nodes (10.66)

actual node utilization
ideal(16 node utilization)

Figure 9: [EXP1] GridDB’s baseline implementation
is able to achieve full node-utilization on a small, 16-
node cluster.

plain the implications of handling many requests concur-
rently within GridDB. Because our cluster can run multiple
processes simultaneously, it is also the case that multiple
processes need to be unfolded (or folded) simultaneously.
In a concurrent environment, two factors contribute the la-
tency of a stage: contention and queuing. Contention is
caused by multithreading. GridDB uses multiple threads in
the unfold and fold stages to interleave requests, which help
hide the latencies of blocking calls to the file system and
database. As the number of concurrent requests increases,
multithreading has the positive effect of increasing through-
put (requests/sec) through the stage, but the negative effect
of increasing the average service-time (time for a thread to
complete a request) of each individual request. At a certain
point thrashing sets in, and adding additional threads actu-
ally decreases the throughput of the system. Since our goal
is to unfold and fold processes as fast as, or faster than the
cluster can execute them, our goal was to maximize through-
put. Towards this end, we ran experiments to choose a good
“sweet-spot” for the number of threads in both the fold and
unfold phases. We settled on 16 unfold threads and 8 fold
threads. This was reasonable, as the unfold stages acts more
frequently as a bottleneck.

The second factor, queuing, emerges when a request is
ready to be processed, but no threads are available. As a
result the job is unable to enter its intended stage and waits
in a queue until a thread is freed and becomes available. We

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

N
um

be
r

of
 N

od
es

 U
til

iz
ed

time (sec)

Utilization vs. time for 64 nodes (10.69)

actual node utilization
ideal(64 node utilization)

Figure 10: [EXP1] The baseline implementation
cannot keep 64 nodes busy. Node utilization is often
less than 50%.

define the stage time as the sum queuing time and service
time for a particular stage.

In the absence of concurrency (in a 1-node run), the un-
fold stage requires 33 seconds, and the fold stage requires
10 seconds. With 64-nodes, the unfold and fold stage times
are much higher (Figure 11). In fact, they are higher than
the execution times of the program, with the unfold stage
representing the primary bottlneck (requests, on average,
spend 2500 seconds in the unfold stage). We decomposed
stage time into queuing time and service time, as shown in
Figure 12. A large portion of time is spent queuing. We
should note that queuing time is not necessarily a sign that
the cluster is under-utilized. It is possible that the clus-
ter is fully-utilized, and that offered load is just very high.
In this particular scenario, the cluster is not fully-utilized.
Our strategy for reducing stage time was simply to reduce
the service time for the unfold stage. By reducing service
time, we also indirectly reduce queuing time. By spending
less time per request, each thread can process requests at a
higher rate, moving requests through the queue faster.

6.2.2 Profiling Drill Down
As mentioned, the unfolding of mscpipe processes was not

occurring at a fast enough rate to keep the 64-node cluster
utilized. To mitigate this deficiency, we drilled down on a
profile of the mscpipe unfold stage. The results are shown
in Figure 13, where file links account for 64% of the ser-

7

Overhead and Payload Stage (Queue + Service) Times
1 node vs. 128 nodes

0

500

1000

1500

2000

2500

3000

baseline (1 node, 2
images)

baseline (128 nodes, 256
images)

t
i
m
e
(
s
e
c
o
n
d
s
)

unfold exec fold

Figure 11: [EXP1] Stage times in overhead stages
(unfold and fold) and the exec stage. Comparison
of overheads in a 1-node run vs. a 64-node run.

Division Between Queue Time and Stage Time

0

500

1000

1500

2000

2500

unfold fold
Overhead Stage

t
i
m
e
(
s
e
c
o
n
d
s
)

queue time service time

Figure 12: [EXP1] Time spent in queue of over-
head stage vs. being serviced by overhead stage
(64-nodes).

vice time. We were rather surprised, in fact, that database
processing queries amounted to less than 0.5% of overall
processing. The low cost of database access to the fact that:

1. PostgreSQL and its associated database driver was
quite fast (queries are sub-millisecond and transactions
are less than 30 milliseconds).

2. Linking is needed at a high frequency, and is relatively
slow on Lustre (see Section 6.5).

6.2.3 Linking Optimizations
In light of the linking bottleneck, we applied a pair of

optimizations. Overall linking time can be decomposed into
two factors, the number of links being created and the time
consumed per link. Each of our optimizations reduce one of
these factors.

Reduce Time/Link with Batching: Recall from Sec-
tion 5, our implementation relies upon the ln utility to cre-
ate links. Instead of calling the ln each time a link needed
to be created, we batched all of the linking requests. We

Decomposing mscpipe unfold service time
(baseline implementation)

file
links,
220.65,
64%

db,
1.26,
0%

java,
123.52,
36%

Figure 13: [EXP1] A profile of how time is spent, on
average, in the unfold phase of mscpipe (128-nodes).

stored a list of links that needed to be created and executed
a process that creates all the links (via system calls) at once.
Benchmarks showed that each ln call costs about 35 ms,
and that the batch program creates links at a cost of (120 +
14) ms per link. Even with this bias, the batched program
performs better than the non-batched program.

Reduce Number of Links with Smart-Linking: Sec-
tion 4.1 explained why leaf-linking is required in order to
preserve filesets. Leaf-linking is never necessary during a
fold phase, but possibly necessary during a process’ unfold
phase. We identified the filesets where leaf-linking was not
necessary (when the process does not add to a fileset) and
transmitted them through root-linking. This is a hybrid
scheme, which we call smart-linking. Figure 14 illustrates
the smart-linking protocol. Directory A is not modified by
program G, so it is root-linked. Program G adds a file to
directory B, so it is leaf-linked.

Smart-linking is especially effective in the FullPipe work-
flow. Many links are created to reference the files in the
Reference Images fileset. The directory represented by the
Reference Images fileset is not modified, and so can be root-
linked. Our profiling indicates that the number of links in
the unfold stage of the mscpipe program drops from 788 to
2.

We profiled these two optimizations on a 1-node, 1-image
run. Their effectiveness is shown in Figure 15. Either opti-
mization results in substantial savings while the combination
of both optimizations yields additional time savings.

6.3 Results: With Optimizations
After applying the linking optimizations, we ran scale-up

experiments and saw a significant improvement. GridDB,
with optimizations, is able to scale-up more than twice as
far as GridDB, without linking optimizations. The opti-
mized version capable of keeping 128 nodes fully occupied,
as shown in Figure 16. Drilling down on the run’s profile,
the major cause was a large reduction in the unfold stage
time of mscpipe. A comparison between stage times of the
baseline and optimized implementations is shown in Figure
17. Although the optimized GridDB run is managing twice
as many nodes and processing twice as many images, its un-
fold stage time is 10 times less than the baseline version of
GridDB leading to increased scale-ups.

8

F workdir

A

B

1

2

3

G workdir

A

B

1

2

3

F workdir

A

B

1

2

3

G workdir

A

B
44

Root-Linking:
very fast, but not always correct

Leaf-Linking:
slow and always correct

F workdir

A
1

2

G workdir

A

B
3

B
3

4

Smart-Linking:
fast and always correct

Creation of file 4
ALLOWED

Creation of file 4
ALLOWED

Creation of file 4 not
ALLOWED

Figure 14: The smart-linking file transfer discipline is uses root-linking when possible and leaf-linking when
necessary.

Linking Optimizations

0
5

10
15
20
25
30
35
40

unfold time linking time
during unfold

t
i
m
e
(
s
e
c
o
n
d
s
)

no optimization
batching optimization
smart-linking optimization
both optimizations

Figure 15: [EXP1] Batching and smart-linking both
improve unfold service. Their combination does
even better. These profiles were taken on a (1 node,
1 image) run.

6.4 Exp 2: Varying Middleware-Load
Our second set of experiments are aimed at demonstrating

the sensitivity of middleware performance with respect to
f workflow program characteristics. In these experiments,
wee decomposed a portion of our SuperMACHO workflow
into a fine-grained 3-node workflow and executed it on our
optimized GridDB implementation. The 3 programs have
a high middleware-load, imposing a larger number queries
and file system links, and executing in a shorter amount of
time. In these experiments, we demonstrate that even with
our optimized implementation, GridDB’s scale-up ability is
sensitive to the middleware-load of the workflow programs
it is executing.

Since this workflow is made of programs with a higher
middleware-load than FullPipe, GridDB is relatively strained

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000 12000 14000

N
um

be
r

of
 N

od
es

 U
til

iz
ed

time (sec)

Utilization vs. time for 128 nodes (10.77)

actual node utilization
ideal(128 node utilization)

Figure 16: [EXP1] Utilization plot after optimiza-
tions. GridDB is able to keep 128 nodes busy.

in executing it. Figure 19 shows the utilization profile for
the execution of 256 images on a 128-node cluster through
DecomposedPipe. The execution is carried in batch: all
mscpipe1 processes are executed first, followed by mscpipe2,
and then mscpipe3 processes. The execution can be divided
into three distinct stages characterized by the program be-
ing executed and delineated by time=900 and time=1600.
As the programs increase in middleware-load, GridDB has
more trouble keeping the cluster occupied.

This test demonstrates that, unfortunately, GridDB (and
more generally, other middlewares that intervene in work-
flow processing) is sensitive to the middleware-load of their
programs. In Section 7, we provide guidelines for how users
may best use their middleware to minimize middleware-load
and maximize middleware benefit.

6.5 Exp 3: Varying File Systems
In our last set of experiments, we compared GridDB’s per-

formance when executing over the two network file systems
available on MCR, Lustre and MCR. Lustre [8], is an open-
source parallel network file system for linux clusters. NFS
[17] is a widely-used, but centralized, network file system.

Our test are based on a 5-stage pipeline similar to Decom-

9

Overhead and Payload Stage (Queue + Service) Times
Baseline vs. Optimized

0

500

1000

1500

2000

2500

3000

baseline (64 nodes, 128
images)

optimized (128 nodes, 256
images)

t
i
m
e
(
s
e
c
o
n
d
s
)

unfold exec fold

Figure 17: [EXP1] Comparison of stage times in
baseline vs. optimized implementations. Unfold
stage time is down 10-fold in the optimized imple-
mentation.

posedPipe with stages that needed on average, 75 links and
25 queries in the unfold stage, and 25 queries and 5 links in
the fold phase. The stages, on average, required 80 seconds
to execute (on Lustre).

In our tests, Lustre out-performed NFS on the Exec phase
(science code execution), as shown in Table 3. This was
expected, as Lustre parallelizes reads and writes. We were,
however, surprised that Lustre was significantly slower on in
the fold and unfold phases. The deficit was traced back to
the metadata operations symlink(2) and stat(2) operations
which are used by GridDB for file linking operations. These
operations are much faster on NFS (see table 4.

According to LLNL systems experts, Lustre’s highly dis-
tributed architecture, strict cache coherency constraints, and
limitations of this particular version of the Lustre code con-
spire to make file system metadata operations particularly
slow. NFS service on the other hand is not distributed and
implements weak cache coherency, thus can turn around
metadata requests quicker.

Application users will prefer to use Lustre where it is avail-
able, although GridDB will execute more scalably on NFS.
The middleware-load of programs running on NFS is re-
duced by two factors: programs run longer and fold and
unfold operations cost less. In some situations, where NFS
will be the only choice (e.g. home-grown clusters), we ex-
pect that GridDB will scale better than the results we have
reported in Section 6.2.

6.6 Summary of Experiments
In these experiments, we show that our baseline imple-

mentation of a single-node GridDB encounters scalability
problems while managing a 64-node cluster. Through a se-
ries of bottleneck drill-downs, we identify that 70% of over-
heads occur during calls from GridDB to the file system.
We propose a pair of optimizations, batching and ”smart-
linking,” to drastically reduce interactions between our mid-
dleware and the file system. As a result, GridDB is able to
manage 128-nodes, with almost 100% utilization. In a sec-
ond set of experiments, we demonstrate the importance of a
program’s middleware-load, or the load that is induced onto
GridDB by a workflow program. Because modeling is an im-
portant factor in middleware (and science application) per-

Decomposing mscpipe unfold service time
(optimized implementation)

file
links,
5.12s,
18%

db,
2.51s,

9%

java,
20.95s,

73%

Figure 18: [EXP1]: The unfold profile for our (128
nodes, 256 images) run shows a marked improve-
ment in file-linking, and also an improvement in ab-
solute java execution time (Compare with Figure
13).

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500

N
um

be
r

of
 N

od
es

 U
til

iz
ed

time (sec)

Utilization vs. time for 128 nodes (10.40)

actual node utilization
ideal(128 node utilization)

Figure 19: [EXP2] Sensitivity to Middleware-load.

formance, we provide guidelines for making a decision on the
modeling of workflows. In our final set of experiments, we
show the sensitivity of GridDB’s performance with respect
to the underlying file system. While a parallel file system
such as Lustre exhibits better application performance, its
metadata operations are slower than a centralized network
file system, such as NFS. Both factors, faster application
execution, and slower linking operation make GridDB less
scalable by virtue of increasing the ”middleware-load” of
workflow programs. We expect that in situations when NFS
is that only file system available, GridDB should perform
and scale better.

7. MODELING IMPLICATIONS
In Section 6.4, we established a connection between GridDB’s

scalability and a program’s middleware-load. In this sec-
tion, we discuss how a modeler can control middleware-load,
making precision trade-offs between the use and omission of
middleware processing.

One method of reducing middleware load is to model pro-
gram interfaces more precisely, in contrast to the “lightweight
modeling” discussed in Section 4.2. For example, if a pro-

10

Quantity NFS(s) Lustre(s) NFS/Lustre
Total Exec Time 2235 412 5.42
Total Unfold Time 24 65 0.37
Total Fold Time 7 27 0.26

Table 3: Comparison of stages when run in NFS
and Lustre. Run on a 5-stage pipeline similar to
DecomposedPipe.

File System stat symlink
NFS < 1 ms < 1 ms
Lustre 5.2 ms 3.3 ms

Table 4: Comparison of metadata operations used
by GridDB on NFS and Lustre using microbench-
marks.

cess creates files out/1, out/2 and out/3, and only needs
to export out/1, then the modeler should specify the pre-
cise file to export. As discussed in Section 4.2, this requires
additional understanding of the program from the modeler
and reduces the maintainability of the workflow model.

A second method is the use of a coarse grain model, en-
capsulating more execution in one program, lengthening its
runtime and eliminating overhead stages. In the next sec-
tion, we discuss the trade-offs between coarse- and fine-grain
models.

7.1 Coarse- vs. Fine-Grain Modeling
In this section, we consider the decision between coarse-

and fine-grain modeling. one which decouples two programs,
interjecting their executions with middleware processing, and
the other, tightly coupling two programs.

Figure 20 illustrates the two alternatives. In the coarse
grain model, one program, which executes both programs F
and G (e.g. a script calling the programs in sequence), is
provided to GridDB. GridDB is unaware of any separation
between programs F and G, and does not interject between
their processing. To the middleware, the effect of applying
program FAndG to fileset X is the creation of fileset Z.

In the first scenario, a description of both programs F
and G have been provided to the middleware. The pipeline
is the composition of the two programs. In this model, the

F

G

X

Y

Z

Fine-Grain
Workflow Model

FAndG

Z

X

Coarse-Grain
Workflow Model

Figure 20: Two Modeling alternatives for a simple
2-node workflow

effect of applying program F to input X creates data fileset
Y. The application of G to fileset Y creates fileset G.

In the coarse-grain model, there is one less unfold and
fold overhead stage (between F and G). This lessens the
middleware-load of the entire workflow. There are a set of
benefits, however, that are lost in the coarse-grain model,
which we discuss these next.

7.2 Benefits of Fine-Granularity Modeling
The benefits of the fine-grain model may be grouped into

two categories, those associated with the decoupling of F
and G and those stemming from middleware interjection
between F and G.

7.2.1 Decoupling
A handful of activities concerning either program F or

program G may be decoupled. The activities include: exe-
cution, prioritization, caching, resource estimation and allo-
cation.

Execution, Prioritization and Caching: the execu-
tion of programs F and G are separated. This may be ben-
eficial when one wants the benefits of one program without
paying the costs of another. For example, a user may want
to produce Y without executing G. This is particularly use-
ful if G is long-running. Likewise, program F and G can be
cached, or prioritized independently.

Resource estimation and allocation: The resource
estimation of programs F and G can be made separately,
and their execution can be assigned to different resources
when beneficial. If programs F and G have vastly different
requirements, it may be easier to assign their executions
independently rather than finding one compute-node that
satisfies the requirements of both.

7.2.2 Interjection
A second set of benefits involves GridDB’s interjection be-

tween the two programs. Examples here include monitoring
and steering of computations.

Monitoring: Monitoring can occur between F and G.
For example, if the execution of F falls outside of three
standard deviations of the expected execution time, the mid-
dleware may issue a warning to the user, or automatically
’retry’ the computation on another node. The middleware
may also ’ingest’ results from F into a database where a user
may begin querying before G completes.

Steering: the user (or GridDB) may ’steer’ the pipeline
computation based on the intermediate result Y . For exam-
ple, if a particular Y indicates that the pipeline execution
will be interesting, the user middleware may expedite the
processing of Y .

8. RELATED WORK
Recently, there have been a handful of systems similar

to GridDB, which elevate data to a first-class status within
the context of workflow management [20, 9, 7]. Most of the
work, thus far, has focused on defining languages, interfaces
and features.

The Pegasus project has begun addressing issues of work-
flow middleware performance. In [11], they identify that
middleware can substantially increase the overhead of work-
flow execution, if not used properly. In that paper, they
adjust parameters of the condor batch scheduler and show
that overall execution time of a fine-grain workflow is highly
sensitive to how often particular activities, such as schedul-
ing and job dispatch, are performed. In [10], examines the
trade-offs between using the Pegasus middleware system and

11

MPI. The former is easier to program with while the latter
should yield better performance. They show that because
of features such as computation caching, the Pegasus imple-
mentation is able to at least match the MPI implementation.
Our work differs from these in that we address performance
and scalability in the context of higher-order functions such
as data provenance, computation caching, and scheduling.

9. CONCLUSION
In this work, we demonstrate the efficacy of GridDB, a

data-centric scientific workflow system, in scalably executing
a data-intensive image processing application on a cluster
computer. Contrary to our original assumptions, middle-
ware calls against the file system, rather than the database,
constituted initial bottlenecks in scaling the middleware. We
implemented techniques to circumvent these interactions,
more than doubling GridDB’s scalability. Secondly, while
software may be written in a scalable manner, application
performance is sensitive to the middleware-load of workflow
programs. We provide guidelines for middleware users to
trade-off costs for specific middleware benefits. Lastly, we
observed the performance of GridDB on the NFS and Lustre
file systems. Because workflow programs will exhibit lower
middleware-load when executed over NFS, the scalability of
GridDB when executing on NFS will be better than when
executing on Lustre.

More work needs to be done. Profiling our optimized sys-
tem indicates that the java middleware code is the emergent
bottleneck. We plan to optimize this code using standard
java optimization techniques. Then, we would like to ex-
plore the parallelization of the GridDB server across multi-
ple nodes on the cluster computer.

10. ACKNOWLEDGEMENTS
We thank Marcus Miller for discussions and the initial

port of GridDB onto MCR, Sergei Nikolaev for assistance
with the SuperMACHO image processing codes and Brian
Behlendorf for enlightening us with Lustre file system inter-
nals.

11. REFERENCES
[1] Apache Derby Home Page.

http://incubator.apache.org/derby/. Accessed 4/24/05.
[2] hsqldb Home Page. http://hsqldb.sourceforge.net/. Accessed

4/24/05.
[3] MySQL Home Page. http://dev.mysql.com/. Accessed 4/24/05.
[4] PostgeSQL Home Page. http://www.postgresql.org/. Accessed

4/24/05.
[5] The large synoptic survey telescop (lsst), 2003.
[6] Supermacho home page. ttp://www.ctio.noao.edu/~supermacho/,

2005.
[7] C.A. Goble, S. Pettifer, R. Stevens and C. Greenhalgh. The

Grid: Blueprint for a New Computing Infrastructure Second
Edition. Morgan Kaufman, 2003.

[8] Cluster File Systems, Inc. Lustre: A Scalable,
High-Performance File System. Technical report, 2002.
http://www.lustre.org/docs/whitepaper.pdf.

[9] E. Deelman, et al.. Pegasus : Mapping scientific workflows onto
the grid. In Across Grids Conference 2004 . 2004.

[10] Deelman Et Al. A Comparison of Two Methods for Building
Astronomical Image Mosaics on a Grid. In The 7th Workshop
on High Performance Scientific and Engineering Computing.
2005.

[11] G. Singh AND C. Kesselman AND E. Deelman. Optimizing
Grid-Based Workflow Execution.

[12] Grid physics network (griphyn) white paper, 2003.
[13] R. Izmailov, et al.. Fast parallel file replication in data grid. In

Workshop proceedings, The Future of Grid Data
Environments. 2004.

[14] Jim Gray. Distributed Computing Economics.
ftp://ftp.research.microsoft.com/pub/tr/tr-2003-24.pdf.
Accessed 04/22/05.

[15] D. T. Liu et al.. The design of griddb: A data-centric overlay
for the scientific grid. In VLDB , pp. 600–611. 2004.

[16] M. Livny, et al.. Particle physics data grid collaboratory pilot.
http://www.ppdg.net/docs/SciDAC/PPDG_overview.pdf,
September 2001.

[17] B. Pawlowski, et al.. NFS version 3: Design and
implementation. In USENIX Summer , pp. 137–152. 1994. URL
citeseer.csail.mit.edu/pawlowski94nfs.html.

[18] Susan L. Graham AND Mark Snir. The NRC Report on the
Future of Supercomputing. In Cyber Technology Watch
Quarterly. 2005.

[19] Yolanda Gil AND Ewa Deelman AND Jim Blythe AND Carl
Kesselman AND Hongsuda Tangmunarunkit. Artificial
intelligence and grids: Workflow planning and beyond. In In
IEEE Intelligent Systems: special issue on e-science. 2004.

[20] Y. Zhao, et al.. Chimera: A virtual data system for
representing, querying, and automating data derivation. In
14th Conference on Scientific and Statistical Data
Management. 2002.

[21] Y. Zhao, et al.. e Virtual Data Grid: A New Model and
Architecture for Data-Intensive Collaboration. In CIDR. 2002.

12

